

Auditing HIV Testing Rates across Europe: Results from the HIDES 2 Study

The 14th European AIDS Conference, 18 Oct 2013 Dr. Viktar Mitsura on behalf of the HIDES 2 audit study group

Background

- 50% of the estimated 2,4 million people living with HIV in Europe (1,5 million Eastern Europe and Central Asia and 860,000 in Western and Central Europe) are unaware of their HIV status
- Approximately 50% are diagnosed late (CD4 < 350)*
- Studies suggest HIV testing remains cost-effective when the undiagnosed HIV prevalence is > 0.1%
- The concept of indicator condition (ID) guided HIV testing is an approach by which health care practitioners can be encouraged to offer more tests based on condition/disease.
- HIV Indicator Diseases across Europe (HIDES) is a project under the HIV in Europe initiative

*Mocroft A et al. Risk Factors and Outcomes for Late Presentation for HIV-Positive Persons in Europe: Results from the Collaboration of Observational HIV Epidemiological Research Europe Study (COHERE). PLoS Med, 2013

PLOS ONE

Feasibility and Effectiveness of Indicator Condition-Guided Testing for HIV: Results from HIDES I (HIV Indicator Diseases across Europe Study)

	Individuals having HIV test (number)	HIV positive (number)	Prevalence (95% CI)	Number of surveys
Total	3588	66	1.84 (1.42–2.34)	39
Indicator condition		/	$\langle \rangle$	
Sexually transmitted infection (STI)	764	31	4.06 (2.78–5.71)	4
Malignant lymphoma (LYM)	344	1	0.29 (0.006–1.61)	5
Cervical or anal dysplasia or cancer (CAN)	542	2	0.37 (0.04–1.32)	4
Herpes zoster (HZV)	207	6	2.89 (1.07–6.21)	5
Hepatitis B or C (HEP)	1099	4	0.36 (0.10–0.93)	6
Ongoing mononucleosis-like illness (MON)	441	17	3.85 (2.26–6.10)	7
Unexplained leukocytopenia/thrombocytopenia (CYT)	94	3	3.19 (0.66–9.04)	4
Seborrheic dermatitis/exanthema (SEB)	97	2	2.06 (0.25-7.24)	4

Ann K Sullivan et al. Feasibility and Effectiveness of Indicator Condition-Guided Testing for HIV: Results from HIDES I (HIV Indicator Diseases across Europe Study), PLoS ONE, January 2013, Volume 8, Issue 1, e52845

Objectives of HIDES 2

(HIV Indicator Diseases across Europe Study – phase 2)

The HIDES 2 study has 2 components:

- 1) Testing consecutive patients presenting with 11 potential indicator conditions to evaluate HIV prevalence (surveys) (2012-July 2014)
- 2) Auditing HIV testing in already established indicator conditions
 - Implement and evaluate an audit system of HIV testing of persons who presented with 6 IDs (tuberculosis, non-Hodgkin lymphoma, anal and cervical cancer, hepatitis B and C and Candida esophagitis) and whether they were tested for HIV

Methods

- Data was collected retrospectively and submitted electronically via an online CRF system (REDCap)
- 1 audit=
 - No of patients presenting at the clinic with one of the IDs, within a certain time period
 - No with ID offered an HIV test
 - No offered/accepting the HIV test
 - No with ID tested for HIV
 - No testing positive for HIV of those tested
- Observed HIV+ rates were applied for each region and ID to estimate the number of HIV diagnoses potentially missed.

Results: characteristics

48 audits were completed in 14 countries across the 4 regions of Europe:

Proportion

Median test rate per audit per region

P=0.011 comparing regions

*IQR; interquartile range

Test rate was defined as the number of persons tested for HIV/ number of patients with ID.

Median test rate per audit per indicator disease

IQR 31-97 68-100 17-85 68-100

A high test rate was defined as >72% as this was the median across all audits.

Median test rate per audit per indicator disease

A high test rate was defined as >72% as this was the median across all audits.

Adjusted[^] odds ratio of high test rate (>72%)^{V indicator disease}

[^]Adjusted additionally for number of persons/year per ID audit. TB; tuberculosis. OC; candida oesophagitis. NHL; non-Hodgkin's lymphoma. AC; anal cancer. CC; cervical cancer. HEP; hepatitis B or C. *global p-values. ⁺compared to test-rate <72%.

Offer and uptake rates

- Offer and uptake rates were calculated where data was available
- The uptake of an offer of an HIV test was close to complete (95-100%) across all regions and all IDs

Median HIV positivity rate per Indicator disease

The median HIV+ rate was 0.9% (IQR 0.0-5.0), with 28 audits (59.6%) having a HIV+ rate >0.1%

Median HIV positivity rate per region

The median HIV+ rate was 0.9% (IQR 0.0-5.0), with 28 audits (59.6%) having a HIV+ rate > 0.1%

10/13

8/10

4/11

6/13

HIV + rate > 0.1% - crude p-value 0.079

Audits 28/47

Adjusted[^] odds ratio of HIV+ rate > 0.1%

[^]Adjusted additionally for number of persons/year per ID audit. TB; tuberculosis. OC; candida oesophagitis. NHL; non-Hodgkin's lymphoma. AC; anal cancer. CC; cervical cancer. HEP; hepatitis B or C. *global p-values. +compared to test-rate <72%.

Potential missed HIV diagnosis

N (LL <i>,</i> UL)	Total	South	West	North	East
Tuberculosis	8 (-32, 50)	1 (-10, 15)	1 (-5 , 8)	1 (-8, 7)	5 (-9, 20)
Non-Hodgkin Lymphoma	53 (21, 84)	42 (28 <i>,</i> 53)	0 (-3, 4)	10 (-2, 24)	1 (-2, 3)
Anal cancer	0 (0, 0)	0 (0, 0)	0 (0, 0)	0 (0, 0)	0 (0, 0)
Cervical cancer	0 (-1, 2)	0 (0, 0)	0 (0, 0)	0 (0, 0)	0 (-1, 2)
HBV/HCV	2 (-17, 24)	1 (-2, 5)	0 ((0, 0)	1 (-1, 3)	0 (-14, 16)
Oesophageal candidiasis	41 (22, 59)	0 ((0, 0)	0 (0, 0)	41 (28, 53)	0 (-6, 6)
Total	104 (-7, 219)	44 (16, 73)	1 (-8, 12)	53 (17, 87)	6 (-32, 47)

<u> 104 HIV+ diagnoses potentially missed</u>

HIV+ rate (lower 95% CL, upper 95% CL) within each region and ID was applied to all persons included in audit (i.e. not just those tested) to estimate number HIV+ potentially missed and the range missed

Limitations and potential bias

- Individual patient data was not available, data is the summary data from audits
- Small numbers and wide confidence limits
- Uptake rates were not available for all audits
- Potential bias: the calculation of potential missed HIV diagnosis does not take into account, if a selection was made (e.g. risk group/ behaviour) in who was offered a test.

Conclusions

- Testing rates in well established HIV IDs remain surprisingly low across Europe, despite high prevalence rates, reflecting missed opportunities for earlier diagnosis and care
 - In particular for cancers, esophageal candidiasis and especially in Northern Europe
- Uptake of testing >95%,
- Offer/test rates 31%-99%
 - Suggesting barriers on provider level
- HIV testing should be part of routine in patients presenting with IDs

HIV Indicator Conditions: Guidance for Implementing HIV Testing in Adults in Health Care Settings

Available at www.hiveurope.eu

Next Steps

- Prospective surveys on 14000 patients with 11 potential IDs to be finalised for analysis by mid 2014
- For more information about HIDES and the HIV in Europe initiative, please contact Marie Louise Jakobsen <u>mlj@cphiv.dk</u> and Dorthe Raben <u>dra@cphiv.dk</u>, Copenhagen HIV Programme
- Sign up your department to the European HIV Testing Week and encourage other departments outside infectious diseases to do so!

European HIV testing week 22 – 29 November 2013

GET INVOLVED»

HIDES Audit Study Group

- HIDES (HIV Indicator Diseases across Europe Study) Audit Study Group: Centers: Austria: M Kitchen, University Hospital Innsbruck, Department of Dermatology and Venerology, Innsbruck. Belarus: A Vassilenko, Belarusian State Medical University, Minsk, Belarus, V M Mitsura, Gomel State Medical University Gomel. Belgium: C Necsoi, Saint-Pierre University Hospital, Brussels. Bosnia: V Hadziosmanovic, Clinical Center University of Sarajevo, Infectious Diseases Clinic, Sarajevo. Croatia: J Begovac, University Hospital of Infectious Diseases, Zagreb. Denmark: U B Dragsted, Roskilde Hospital, Roskilde. France: National Coordinator: Y Yazdanpanah, Hopital Bichat Claude Bernard, Paris, F Ajana, Centre Hospitalier de Tourcoing, Tourcoing, A Cabié, Centre Hospitalier Universitaire de Fort de France, Fort de France, Matinique. Israel: Z M Sthoeger, D Elbirt, Ben Ari Institute of Clinical Immunology, Rehovot. Italy: L Comi, Unit of Infectious Diseases, San Paolo Hospital, Milan, B M Celesia, Unit of Infectious Diseases University of Catania, ARNAS Garibaldi, Catania, Italy. Poland: A Grzeszczuk, Medical University of Bialystok, Department of Infectious Diseases and Hepatology, Bialystok. Portugal: F Maltez, MJ Manata, Hospital Curry Cabral, Lisbon. Spain: V P Estrada, Hospital Universitario San Carlos, Madrid. Sweden: V S Johansson, Department of Infectious Diseases, Karolinska University Hospital, Stockholm. United Kingdom: National Coordinator: A Sullivan, Chelsea and Westminster Hospital, London, M Rayment, Chelsea and Westminster Hospital, London, S Morris, Western General Hospital, Edinburgh, A Palfreeman, Leicester University Hospital Leicester, J Minton, St James's University Hospital, Leeds, E L C Ong, The Newcastle upon Tyne Hospital, Newcastle, J Anderson, Homerton University Hospital, London. Ukraine: G Kutsyna, Luhansk AIDS Center, Luhansk.
- Advisory Group: N Clumeck, Saint-Pierre University Hospital, Brussels, Belgium, J Gatell, Hospital Clínic de Barcelona, Barcelona, Spain, B Gazzard, Chelsea and Westminster Hospital, London, England, J D Lundgren, University of Copenhagen and Rigshospitalet, Copenhagen, Denmark, A d'Arminio Monforte, Unit of Infectious Diseases, San Paolo Hospital, University of Milan, Milan, Italy, J Rockstroh, Department of Medicine, University of Bonn, Germany, A Mocroft, University College London, London, UK, Y Yazdanpanah, Hopital Bichat Claude Bernard, Paris, France.
- **Coordinating Centre Staff**: A Sullivan, Chelsea and Westminster Hospital, London, UK, K Champenois, Inserm U738, ATIP/AVENIR Team, Paris, France, P Lopez, D Raben, M L Jakobsen, R S Brandt, Copenhagen HIV Programme, Rigshospitalet, Copenhagen, Denmark.

Statistical Analysis: A Mocroft, University College London, UK.